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Abstract. A rather general form of the conventional cut and project scheme is used to define
quasicrystals as point sets in realn-dimensional Euclidean space. The inflation or, equivalently,
the self-similarity properties of such quasicrystals are studied here assuming only the convexity
of the acceptance window. Our result is a description of inflation centres ofall types in a
quasicrystal and a proof that our description iscomplete: there are no other inflation centres. For
any chosen quasicrystal point (‘internal inflation centre’)u, its inflation properties are given as
a set of scaling factors. It turns out that the scaling factors form a one-dimensional quasicrystal
with a u-dependent acceptance window (‘scaling window’). The intersection of the scaling
windows associated with all points of a quasicrystal is the one-dimensional quasicrystal of
universal (‘internal’) scaling symmetries. Its acceptance window is the interval [0, 1]. External
inflation centres of a cut and project quasicrystal are those which are not among quasicrystal
points. Their complete description is given analogically to the description of the internal ones
imposing some additional requirements on the scaling factors. Between any two adjacent
quasicrystal points one finds a countable infinity of external inflation centres. The scaling
factors belonging to any such centreu form an infiniteu-dependent subset of points of the
quasicrystal with acceptance window containing [0, 1].

1. Introduction

The importance of inflation symmetries in describing quasicrystals has long been recognized.
Their role there is comparable with that of translation symmetries in the description of
crystals. Many aspects and instances of such symmetries have been studied and are found
in the literature; see for example [8, 20, 3, 1].

In this paper we study properties of infinite deterministic aperiodic point sets which
share many properties with physical quasicrystals. For simplicity we speak of quasicrystals
throughout the paper. In the absence of a generally accepted definition of quasicrystals, in
this work we adopt as our definition a generic form of the cut and project method [19],
taking a quasicrystal to be a point set in ann-dimensional Euclidean spaceRn. Moreover,
we restrict our consideration to quasicrystals whose points have coordinates in the ring
Z[τ ] of integers of the quadratic extensionQ[

√
5] of rational numbers by

√
5. There are

various possibilities of defining a quasicrystal, most of them can be (re)cast in terms of a
certain cut and project scheme [14]. This method implies the existence of a region�, called
an acceptance region (or acceptance window) and a mapping (‘star map’) under which all
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quasicrystal points are mapped into�. All quasicrystals here are assumed to be of the cut
and project type, denoted by6(�), with the acceptance window� convex and closed.

Emergence of the cut and project method is usually associated with the work of de
Bruijn [6] in connection with his study of the two-dimensional tilings of Penrose. Studies
of its generalization to higher dimensions found a strong motivation after the discovery of
materials with ‘forbidden’ symmetries whose x-ray spectra could be described using more
than three integer coordinates. The earliest apparently independent extensions of the method
appeared in [9, 2]. Subsequent exploitations of the method were numerous and fruitful.
However, it was apparently only in [15, equation (5.1)] that a mathematical definition of
a quasicrystal was formulated. The original definition was intended for quasicrystals with
local symmetries of the typeH4 and of its subgroups. A generalization to any Coxeter
group, crystallographic or not, or even unrelated to any local symmetry group, is taken here
from [5]; it is also found in the lecture notes [19]. Unlike the previous cut and project
algorithms, this is a mathematical definition which allows one to deduce readily a number
of general (for example dimension-independent) properties of quasicrystalline point sets,
such as aperiodicity, infinite repetition of any finite fragment, the inflation properties of this
paper, description of the minimal distances in quasicrystals [10], and others. Its further
generalization to quadratic irrationalities other than

√
5 is straightforward [7]. Several

equivalent but very different methods of defining cut and project quasicrystals are found in
[14]. They are based on the work of Meyer [12, 13].

The purpose of this paper is to rigorously study properties of quasicrystals inRn which
are usually called either self-similarity or inflation properties [3]. More precisely, we
identify inflation symmetry centres and determine the scaling factors appropriate for each
of them. It turns out that every quasicrystal point is a self-similarity (or inflation) centre
of its quasicrystal and that inflation centres of6(�) are equally plentiful outside of the
quasicrystal point set.

An inflation centre can be understood as the centre of a rescaling symmetry of the
quasicrystal. The scaling factor determines the type of the symmetry. A pointu in Rn is
called an inflation centre of types ∈ R, or simply ans-inflation centre, of a quasicrystal
6(�), if

s · (y − u)+ u ∈ 6(�) for all y ∈ 6(�). (1)

It is useful to distinguishu in (1) according to whetheru ∈ 6(�) (internal inflation
centre) or u /∈ 6(�) (external inflation centre). Definition (1) turns out to be a very
fruitful generalization of the one given in [19] because it allows us to determine all scaling
symmetries of6(�).

First we show that one needs to consider only scaling factorss ∈ Z[τ ] and pointsu
having coordinates inQ[

√
5]. Inflation centresu with coordinates in the ringZ[τ ] belong

necessarily to the quasicrystal, otherwiseu is an external inflation centre.
In theorem 3.2 we provide: (i) a description of internal inflation centres ofall types,

and (ii) a proof that our description iscomplete: there are no other inflation centres of any
type among the quasicrystal points. It turns out that the scaling factorss associated with a
point u ∈ 6(�) form a one-dimensional quasicrystal whose acceptance window depends on
u. Considering all the pointsu of 6(�) and their correspondingu-dependent acceptance
windows at once, it is natural to ask about the intersection of these windows. It turns out
to be an interval independent of�, namely [0, 1].

Perhaps the most interesting is the universality of the implication of this result. All
points of any quasicrystal6(�) ⊂ Rn with practically any closed acceptance window
(assuming only the convexity of�) in any dimensionn > 1, are inflation symmetry centres
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with surprisingly many scaling factorss in common, namely alls ∈ 6([0, 1]).
The description of external inflation centres requires some generalization of the proof of

theorem 3.2, which leads to theorem 3.5. For a fixed external inflation centreu the scaling
factors form a rescaled one-dimensional quasicrystal. It is the intersection of an ideal in
Z[τ ], shifted by 1, with a one-dimensional quasicrystal given by the same expression as for
the internal inflation centres in theorem 3.2.

2. Mathematical preliminaries

Consider the two roots of the algebraic equationx2 = x+1, the well known golden ratioτ
and its conjugateτ ′. In the extension of the rational numbers byτ , Q[τ ] = {s+tτ |s, t ∈ Q},
there is an automorphism′ : Q[τ ] → Q[τ ] given by τ → τ ′. The ringZ[τ ] of integers
of Q[τ ] is the setZ[τ ] = {a + bτ |a, b ∈ Z}. The ringZ[τ ] is a ring of principal ideals;
they are of the formζZ[τ ], for a ζ ∈ Z[τ ]. In particular,Z[τ ] it is a unique factorization
domain, which assures that the greatest common divisor and the lowest common multiple
are well defined. For anyu ∈ Q[τ ], there existp, q ∈ Z[τ ], gcd{p, q} = 1, such that
u = p

q
. The set{±τ k|k ∈ Z} is the group of units ofZ[τ ].

The stage for building ann-dimensional quasicrystal in a Euclidean spaceRn is the
torsion freeZ[τ ]-moduleM := ∑n

i=1Z[τ ] αi , with the basisαi, . . . , i = 1, .., n. M ⊂ Rn
is called aZ[τ ]-lattice of rankn, if it spansRn overR. It is an everywhere dense set of
points. We considerZ[τ ]-lattices for which the standard scalar product of lattice vectors
takes values inQ[τ ].

Let ∗ be a mapping∗ : M → M∗ ⊂ Rn. It is called a ‘star map’ if, for anyx, y ∈ M
and anyr ∈ Z[τ ], it is: (i) additive: (x + y)∗ = x∗ + y∗; (ii) semilinear: (rx)∗ = r ′x∗, and
(iii) M∗ spansRn. The star map is uniquely extended to the rational spanQM of M. Note
that if the scalar product of vectorsx, y ∈ M is Z[τ ]-valued, then(x|y) = (x∗|y∗)′.

As a consequence of these properties,M∗ is a dense point set inRn. The criterion for
choosing quasicrystal points is whether or not the star map image of the points falls into a
chosen acceptance window� ⊂ Rn.
Definition 2.1.Let M be aZ[τ ]-lattice in Rn and let� be a bounded convex and closed
subset ofRn. The set of points6(�),

6(�) = {x ∈ M|x∗ ∈ �} (2)

is a cut and project quasicrystal;� is called an acceptance window for6(�).

In general, no further conditions on� have to be imposed. The boundedness of the
acceptance window assures the Delaunay property of6(�) [14], the convexity is important
for τ -inflation invariance [4], and the closure of� simplifies the proof of one of our
statements. Partially open or open� would complicate the argument. Details of an(n−1)-
dimensional boundary of� could not influence any conclusions pertinent to physics. Indeed,
from a viewpoint of a physicist all real-life quasicrystals are necessarily of finite size,
containing a finite number of points—atoms. Consequently,� is a discrete set of points,
not a dense one! In fact it is another quasicrystal.

We call the quasicrystals defined in (2) of the cut and project type. However, the
definition does not make obvious the location of the crystallographic lattice in which the
‘cutting’ takes place and from which the ‘projecting’ is done. Instead we have been operating
exclusively with the points ofM andM∗.

In [5, 19] it was shown that(M,M∗) can be viewed as acrystallographic latticeM̃
in R2n, i.e. the scalar product of any two vectors of the lattice is integer. To see this, take
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anyx ∈ M and considerx andx∗ as a single point(x, x∗) ∈ M̃ ⊂ R2n. The integer-valued
scalar product is defined iñM by the scalar products inM andM∗ which both take values
in Z[τ ]:

((x, x∗)|(y, y∗)) := (x|y)
2+ τ +

(x∗|y∗)
2+ τ ′ ∀x, y ∈ M. (3)

In particular, forn = 1, it is easy to verify directly that, for any(x, x∗) with x = a + bτ ,
a, b ∈ Z, we can write(a + bτ, a + bτ ′) = a(1, 1) + b(τ, τ ′) and that(1, 1) and (τ, τ ′)
form an orthonormal basis of the two-dimensional square latticeM̃. Indeed,

((1, 1)|(1, 1)) = 1 ((τ, τ ′)|(τ, τ ′)) = 1 ((1, 1)|(τ, τ ′)) = 0.

ThenM andM∗ are two projections of points of̃M on subspaces orthogonal to each
other with respect to (3). The acceptance window� ⊂ M∗ determines the ‘cut’ which is
being made inM̃. The quasicrystal6(�) then consists of the points which are projected
from the ‘cut’ toM.

Consider an example of (2): a one-dimensional quasicrystal. In this case� is an
interval in R and quasicrystal points are numbers fromZ[τ ]. A star map onZ[τ ] is the
automorphism′,

(a + τb)∗ = a + τ ′b a, b ∈ Z.
We choose� = [0, 1], the acceptance region of the quasicrystal6([0, 1]), which plays
an important role in this paper. One verifies directly from definition (2), that the first few
points nearest to 0 in the quasicrystal6([0, 1]) are the following

. . . ,−τ, 0, 1, 1+ τ, 2+ 2τ, 2+ 3τ, 3+ 4τ, 4+ 5τ, 4+ 6τ,

5+ 7τ, 5+ 8τ, 6+ 9τ, 7+ 10τ, . . . (4)

Note that the quasicrystal6([0, 1]) has a global reflection symmetry in the point1
2 and

therefore its negative points are readily obtained from those greater than 0. Indeed, for every
x ∈ 6([0, 1]), one hasy = 1− x ∈ 6([0, 1]) becausex∗ ∈ [0, 1]⇔ y∗ = 1− x∗ ∈ [0, 1].

Let us consider the distances between adjacent points of6([0, 1]) as tiles. It is curious
to notice that6([0, 1]) has an exceptional tile which occurs precisely once, namely the one
between the points 0 and 1. All other tiles of6([0, 1]) have the length eitherτ or τ 2. In
general, one-dimensional subquasicrystal of any cut and project quasicrystal6(�) ⊂ Rn
has either two or three tiles. Demonstrations and exact formulation of these phenomena are
presented in [10].

Examples of two-dimensional quasicrystals, calculated using (2), are found in many
places, for example in [15–19, 5].

3. Internal and external inflation centres

In this section we address the rescaling invariances of a quasicrystal with respect to various
fixed points inRn.

The first example of inflation symmetry of this kind is the rescaling of anyx ∈ 6(�)
by τ k, k ∈ N, in the case of an acceptance window� centred at origin, centrally symmetric,
and convex. The inflation centre here is the origin. More general is the definition of an
inflation centreu of degreed ∈ N,

τ d · (y − u)+ u ∈ 6(�) ∀y ∈ 6(�). (5)

Some examples of inflation properties (5) of the internal type are found in [19]. Our
definition (1) of an inflation centre includes (5) as a special case. The inflation centres
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which are external to the set6(�) have apparently not been exemplified in the literature
before. Here we describe them all.

Note that definition (1) imposes restrictions neither on the inflation centreu ∈ Rn, nor
on the scaling factors ∈ R. Let us first determine whichu’s ands’s may give a nontrivial
scaling symmetry of a cut and project quasicrystal.

Suppose thatu ∈ Rn is an s-inflation centre for somes ∈ R. For any two quasicrystal
pointsy1 andy2, one hass(y1−y2) = (u+s(y1−u))−(u+s(y2−u)) ∈ 6(�)−6(�) ⊂ M.
Due to definition (2) of6(�) ⊂ M, there is no properZ[τ ]-submodule ofM containing
6(�), therefores belongs toZ[τ ] (see also [1]). For fixeds ∈ Z[τ ], the condition
(1 − s)u + sy ∈ 6(�) ⊂ M, for all y ∈ 6(�), implies thatu is an element of the
rational spanQM of theZ[τ ]-moduleM.

For our purpose it is convenient to reformulate definition (1) in an equivalent way.

Remark 3.1.Let s ∈ Z[τ ] and6(�) ⊂ Rn be a cut and project quasicrystal. Definition (1)
is equivalent to the statement:u+x ∈ 6(�) impliesu+ sx ∈ 6(�), i.e.u is ans-inflation
centre if and only if

u+ x ∈ 6(�) H⇒ u+ sx ∈ 6(�).
In this paper we provide a description of all internal and external inflation centres and

all corresponding scaling factors. Foru ∈ QM the star map is well defined. A pointu such
that u∗ does not belong to the closure� of �, cannot be a nontrivial inflation centre (see
remark 3.1).

Suppose first thatu is an element of theZ[τ ]-moduleM. Assuming that� is closed,
i.e.� = �, u∗ ∈ � implies thatu ∈ 6(�). A complete description of the internal inflation
centres (1) is provided in theorem 3.2. The external inflation centres of6(�) are described
by theorem 3.5.

Theorem 3.2.Let 6(�) ⊂ Rn be a quasicrystal with bounded closed convex acceptance
region� ⊂ Rn. For anyu ∈ 6(�) we denote byσ(x, u), ρ(x, u), andµ(u) the following:

ρ(x, u) = inf{‖(kx)∗‖|(u+ kx)∗ ∈ Rn \�; k ∈ Z[τ ]} (6)

σ(x, u) = sup{‖(kx)∗‖|(u+ kx)∗ ∈ �; k ∈ Z[τ ]} (7)

µ(u) = inf

{
ρ(x, u)

σ (x, u)

∣∣∣∣(u+ x)∗ ∈ �} . (8)

A point u ∈ 6(�) is ans-inflation centre if and only ifs belongs to the one-dimensional
quasicrystal6([−µ(u), 1]).

A proof of the theorem is based on the following two lemmas. In the first one we find
a set ofs ∈ Z[τ ] such thatu is an internals-inflation centre.

Lemma 3.3.Let 6(�) ⊂ Rn be a quasicrystal with bounded closed acceptance region
� ⊂ Rn. If � is convex, then any pointu ∈ 6(�) is an s-inflation centre for any
s ∈ 6([−µ(u), 1]), i.e.

s · (y − u)+ u ∈ 6(�) ∀u, y ∈ 6(�) ∀s ∈ 6([−µ(u), 1]). (9)

Proof. We use remark 3.1. Clearly,6([−µ(u), 1]) = 6([0, 1]) ∪ 6([−µ(u), 0)). Since
6([0, 1]) is independent ofu, it is convenient to study the two cases separately.

Take anyu ∈ 6(�), i.e.u∗ ∈ �. First, let us show thatu is an6([0, 1])-inflation centre.
Take anys ∈ 6([0, 1]). If y ≡ u+ x ∈ 6(�) theny∗ ∈ �. Sinces ∈ 6([0, 1]), we have
06 s ′ 6 1, so that the point(u+ sx)∗ = u∗ + s ′x∗ lies on the straight line betweenu∗ and
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y∗ = (u+x)∗. (Note that ifu, y ∈ M thenx = y−u ∈ M, i.e. the symbolx∗ is meaningful.)
However,u∗, y∗ ∈ � and� is convex, so that also(u+ sx)∗ ∈ �⇐⇒ u+ sx ∈ 6(�).

Next considers ∈ 6([−µ(u), 0)). The steps are similar. It is only necessary to show
the implication

(u+ x)∗ ∈ � H⇒ (u+ sx)∗ ∈ �. (10)

However, the numberµ(u) was defined precisely to assure that implication. Indeed, take
any y∗ = (u + x)∗ ∈ �. The point(u + sx)∗ lies on the straight line determined byu∗

and y∗. Since−µ(u) 6 s ′ < 0, we have|s ′| = −s ′ 6 ρ(x,u)

σ (x,u)
for any x ∈ M such that

y∗ ≡ (u+ x)∗ ∈ �.
Recall the definition ofρ(x, u) andσ(x, u). The pointsu∗ andy∗ ≡ (u+x)∗ determine

a straight line inRn, which has a nonempty convex intersection with�, which we denote
by px . The functionsρ(x, u) andσ(x, u) are the minimal and maximal distances between
u∗ and some point inpx . We have

y∗ = (u+ x)∗ ∈ px H⇒ ‖y∗ − u∗‖ = ‖x∗‖ 6 σ(x, u) (11)

and

y∗ = (u+ x)∗ ∈ px ⇐H ‖y∗ − u∗‖ = ‖x∗‖ 6 ρ(x, u). (12)

The latter holds even with the nonsharp inequality since� is closed, i.e. the infimum (cf
the definition ofρ(x, u)) is not achieved on points(u+ x)∗ /∈ �.

Using (11), we obtain

‖(u+ sx)∗ − u∗‖ = |s ′| · ‖x∗‖ 6 |s ′| · σ(x, u) 6 ρ(x, u)

σ (x, u)
· σ(x, u) = ρ(x, u).

Therefore

|s ′| · ‖x∗‖ 6 ρ(x, u).
Due to (12),(u+ sx)∗ ∈ px , i.e. (u+ sx)∗ ∈ �. �

The quasicrystal6([0, 1]) is a common subset of all6([−µ(u), 1]). It is independent
of � and also the dimension of the space.

This observation is far reaching: all points of all quasicrystals6(�) ⊂ M ⊂ Rn with
all convex acceptance windows in all dimensionsn > 1, are internal inflation symmetry
centres with surprisingly many scaling factorss in common, namely alls ∈ 6([0, 1]).
However, eachu ∈ 6(�) has other scaling factors as well as those of6([0, 1]), forming
theu-dependent quasicrystal6([−µ(u), 0)).

Let us consider an example of aH2 cut and project quasicrystal6(�), whose acceptance
window� is a disk (of radius 5), and let us illustrate the abundance of its internal inflation
symmetries given by various points of6([0, 1]). One of its external inflation centres is
pointed out at the end of this section together with its scaling factors.

We say that a quasicrystal is ofH2-type if M is a linear combinations of simple roots
of H2 with coefficients fromZ[τ ]. The Coxeter groupH2 has two simple roots. These
are equal length vectors, the angle between them is 4π/5. A standard model [19, 5] of
the simple roots in the complex plane is 1 andξ = e

4π i
5 . Their star map is then 1∗ = 1

andξ ∗ = ξ2. In figure 1 a circular window view of such a quasicrystal is presented. Four
sets of examples of (1) are shown in which the inflation factors takes the values (4) from
6([0, 1]) andu is a quasicrystal point.

The following lemma shows that no pointu ∈ 6(�) has other scaling symmetries.
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Figure 1. A disk-shaped fragment of a cut and project quasicrystal with a circular acceptance
window is shown. Small circles represent the quasicrystal points. The four full light lines across
the quasicrystal indicate four sets of examples of internal inflation symmerties with the scaling
factors from6([0, 1]). The endpoints of the thick segment on a line are the points chosen to
representu and y in (1). (The two points are interchangable due to the global symmetry of
6([0, 1]) around the point12 .) The full circles are the points scaled according to (1). The values
of the scaling factors which were used are the nearest points to 0 in6([0, 1]). Most of them
are listed in (4). The dotted line indicates a similar example of an external inflation symmetry
centre denoted by the cross. The distance, which is scaled, is the one between the cross and the
full circle nearest to it. The scaling factors are from (17).

Lemma 3.4.Let 6(�) ⊂ Rn be a quasicrystal with bounded acceptance region� ⊂ Rn,
and lets ∈ Z[τ ]. If u is an internals-inflation centre of6(�), thens ∈ 6([−µ(u), 1]).

Proof. We prove this by contradiction. Suppose there exists ans /∈ 6([−µ(u), 1]) such that
u is thes-inflation centre of6(�). We find any∗ = (u+x)∗ ∈ �, such that(u+ sx)∗ /∈ �.
Sinces /∈ 6([−µ(u), 1]), eithers ′ > 1 or s ′ < −µ(u).

Let us first consider the cases ′ > 1. Since the image of6(�) under the star map is
dense in�, we can find a pointy∗ = (x + u)∗ ∈ � close enough to the boundary of�,
such that(u+ sx)∗ falls out of the acceptance domain. Thus the necessary condition foru

to be ans-inflation centre is not fulfilled, which is a contradiction.
If s ′ < −µ(u) then from the infimum property ofµ(u), there exists anx ∈ M, such

that (u+ x)∗ ∈ � and |s ′| = −s ′ > ρ(x,u)

σ (x,u)
.

At first, let us discuss the caseρ(x, u) < σ(x, u). Note that for anykx, such that
ρ(x, u) < ‖(kx)∗‖ < σ(x, u), exactly one of the points(u+ kx)∗, (u− kx)∗ belongs to�.
Considerε such that

0< ε < min

{
|s ′| − ρ(x, u)

σ (x, u)
; 1− ρ(x, u)

σ (x, u)

}
. (13)

From the supremum property ofσ(x, u) there existsk such that(kx + u)∗ ∈ � and

‖(kx)∗‖ > σ(x, u) · ρ(x, u)

ρ(x, u)+ εσ (x, u) > ρ(x, u). (14)

Note that (14) forces(u− kx)∗ /∈ �.
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Since we suppose thatu is an s-inflation centre, we haveu + s(kx) ∈ 6(�) and thus
(u+ skx)∗ ∈ �. According to the definition ofρ(x, u) and sinces ′ < 0, it means that

‖(skx)∗‖ 6 ρ(x, u). (15)

Combining (14) and (15) we obtain

|s ′| = ‖(skx)
∗‖

‖(kx)∗‖ < ρ(x, u) · ρ(x, u)+ εσ (x, u)
σ (x, u)ρ(x, u)

= ρ(x, u)

σ (x, u)
+ ε

and thus a contradiction with (13).
In the case whenρ(x, u) = σ(x, u) is |s ′| = −s ′ > ρ(x,u)

σ (x,u)
= 1 and clearly for a point

(u+ kx)∗ ∈ � sufficiently close to the boundary of�, the point(u+ skx)∗ /∈ �, thusu is
not ans-inflation centre. �

So far we have described all the inflation centres of a quasicrystal6(�) that belong to
theZ[τ ]-moduleM and hence also to6(�) (internal inflation centres). We have pointed
out that any candidates for nontrivial external inflation centres must be elements ofQM,
such thatu∗ ∈ �. A description of the external inflation centres can be easily derived from
theorem 3.2. Carrying out similar considerations for fixedu ∈ QM as in the proofs of
lemmas 3.3 and 3.4, one has to answer the question for which factorss ∈ 6([−µ(u), 1]),
the fact thatu + x ∈ M implies u + sx = (1− s)u + s(u + x) ∈ M. It turns out that all
scaling factors have to belong to the set(1−ζZ[τ ]), corresponding to certain idealζZ[τ ] of
Z[τ ], namely forζ , such thatζu ∈ M and that there is no properZ[τ ]-submoduleL of M
containingζu. The factorζ can be found as the lowest common multiple of denomainators
of coordinates ofu in the basisαi of theZ[τ ]-moduleM. More precisely, considering the
notation of theorem 3.2, one has theorem 3.5, where all the inflation centres of6(�), both
internal and external, are described.

Theorem 3.5.Let � ⊂ Rn be a bounded convex and closed region. Letu ∈ QM,u∗ ∈ �,

u =
n∑
i=1

pi

qi
αi

whereαi , i = 1, . . . , n, is the basis of theZ[τ ]-moduleM, andpi, qi are numbers inZ[τ ],
such that gcd{pi, qi} = 1. Denote byζ the lowest common multiple ofqi , i = 1, . . . , n.
Thenu is ans-inflation centre of6(�), if and only if

s ∈ 6([−µ(u), 1]) ∩ (1− ζZ[τ ]). (16)

Let us now illustrate the presence of the external inflation centre on the quasicrystal in
figure 1, according to theorem 3.5. Between any two adjacent quasicrystal points one finds
a countable infinity of external inflation centres. The scaling factors belonging to any such
centreu form an infiniteu-dependent subset of points of6([−µ(u), 1]) ⊃ 6([0, 1]).

We choose the inflation centreu so thatζ = 2. We select the pointss ∈ 6([0, 1])
from (4), which are divisible by 2. The scaling factors, appropriate tou, are of the form
1− s. They satisfy (16), since 1− 6([0, 1]) = 6([0, 1]). The scaling factors used in the
exapmle of external inflation centre are

1, −1− 2τ, −3− 6τ, −7− 12τ, −9− 16τ. (17)
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4. Concluding remarks

(1) The quasi-addition operation on quasicrystal points introduced by Berman and Moody
[4], which has occasionally been calledτ -inflation [5], can be understood as a special case
of (1). Indeed, it follows from two facts, namely that: (i) the scaling properties given by the
elements of6([0, 1]) apply to all points of6(�), and (ii) s = −τ is among the elements
of 6([0, 1]). Explicitly, we have the equality of operations

τ 2x − τy = −τ(y − x)+ x
where on the left is the quasi-additionx ` y and on the right is the(−τ)-inflation.

Consequently, there is a nontrivial quasiaddition-like operation on6(�) for every
element of6((0, 1)). Practically, the most interesting are the lowest values shown in
(4). By taking an open interval(0, 1) instead of [0, 1], we are excluding only the trivial
possibilitiess = 0 ands = 1. For example, puts = 2τ 2. Then we define the operation

x ` y := 2τ 2(y − x)+ x = 2τ 2y − (1+ 2τ)x = 2τ 2y − τ 3x ∀x, y ∈ 6(�)
under which6(�) is closed by theorem 3.2.

(2) Our assumption that� is closed inRn is not very essential for most of our
conclusions. It greatly simplifies the arguments. Open or partially closed� would, for
example, remove at most one element from the quasicrystal of scaling factors, namely
−µ′(u), if it is in Z[τ ] and satisfies some further conditions. Also, one would find nontrivial
external inflation centres inside theZ[τ ]-module, namely thoseu ∈ M which under star
maps are mapped into the boundary of�.

(3) It is shown in [11] that for any (−τ )-inflation invariant Delaunay point set inRn,
one can find an affine mapping into aZ[τ ]-moduleM. The resulting point set is a cut and
project quasicrystal whose acceptance region has a convex interior. Hence, results of this
paper are also applicable to such cases.

(4) It is well known that some special two-dimensional quasicrystals can be constructed
using self-similarity of the corresponding tilings. It would be interesting to investigate
the limits of the possibilities of constructing quasicrystals by means of theirs-inflation
properties.

It is likely that here one has a tool for dealing with a much larger class of quasicrystals
and which is not limited to two dimensions.

(5) There is an aspect of the theory of quasicrystalline point sets which is evidently
waiting to be fully investigated, namely its connection with the theory of fractals. It has
long been recognized that the mapM → M∗ is a fractal-like contraction map: an inflation

Figure 2. Matching rules given by four-colouring of the vertices of Penrose rhombs.
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transformation inM is a contraction inM∗. Therefore the completeness of our description
of the inflation symmetries can be considered as a step in clarifying that connection.

(6) Undoubtedly the best known and by far the most studied quasicrystals arise as the
two-tile tilings of the plane of Penrose [6]. The vertices of the tiles form a quasicrystal
in R2 to which the present results donot apply, because their acceptance region does not
satisfy the convexity requirement. However, the quasicrystal of Penrose can be viewed
as a union of four subquasicrystals with four different acceptance regions. In the case of
rhombic Penrose tiling, there are four different pentagonal acceptance regions. Hence, our
results are applicable to each of the four subquasicrystals separately but not to their union.
For details of such a view on Penrose tilings, see section 4 in [17].

Curiously, during such a chromatic decomposition of Penrose quasicrystals, the well
known matching rules for the rhombes are translated into the requirement to match the four
colours of the vertices of the tiles shown in figure 2. The colour numbers are given by (4.6)
and (3.12) in [17] withs1 = s2 = 1.
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